

FIS Wholesome Practices for Securing a FOSS VistA Stack

> K.S. Bhaskar ks.bhaskar@fisglobal.com +1 (610) 578-4265 http://fis-gtm.com

Acknowledgements

Developed in collaboration with

Jon Tai Software Developer, Medsphere Systems Corp. jon.tai@medsphere.com

Convert "unknown unknowns" into "known unknowns"

• Simplistic view

- Ensuring that the wrong people don't have access
- Ensuring that the right people have access
 - Including that the wrong people don't stop the right people from their access
- Knowing who has had access and what they have done

• Simplistic view

- Ensuring that the wrong people don't have access
- Ensuring that the right people have access
 - Including that the wrong people don't stop the right people from their access
- Knowing who has had access and what they have done

Complex view

Machinery to implement your simplistic view

• Simplistic view

- Ensuring that the wrong people don't have access
- Ensuring that the right people have access
 - Including that the wrong people don't stop the right people from their access
- Knowing who has had access and what they have done

Complex view

Machinery to implement your simplistic view

Ultimate view

Knowing how well your simplistic view represents reality

In our imperfect universe

- Absolute security does not exist
- Practical security is a matter of trade-offs between
 - -The value of what is being protected
 - The potential cost of its loss (including litigation liability & criminal prosecution)
 - Cost of protection
 - Usability of the protected asset

Don't forget wetware, also known as "Layer 8"

Security Policy

- •Yes, you <u>do</u> need a <u>written</u> security policy
 - Identification
 - What are the information assets?
 - •Who legitimately needs access?
 - •To what? Why? When?
 - Standards
 - Actions
- •Yes, you should go through business exercises simulating simulated security violation scenarios
- Even if you are Superman, think about times when you must be away

http://www.sans.org/resources/policies/Policy_Primer.pdf http://www.sans.org/reading_room/whitepapers/policyissues/1331.php

Pieces of the Puzzle

- Hire an expert or do it yourself
- Not discussed further here

http://www.sans.org/resources/policies/#hipaa http://www.sans.org/reading_room/whitepapers/hipaa/

The Layers

- Client (OS, browser, terminal emulator)
- Network
- VistA
- GT.M
- Linux
- (Interactions)

Clients

• Security starts at the end user's device

Hardware/physical

- Stolen laptops can contain sensitive information
 - Fortunately, standard VistA clients do not store patient information on the client
 - -There may be information on the swap file
- Software
 - •Operating system
 - •Web browser (if VistA applications are accessed through a web browser)
- Malware & social engineering can be used to steal sensitive information and passwords

Securing Clients

- Keep software current with latest security patches
- Use appropriate anti-virus, anti-malware, and personal firewalls (e.g., http://www.clamwin.com)
- Use dedicated client machines for VistA no webbrowsing and general use (set up dual boot of separate Windows partitions to reuse hardware)
- Ensure that only approved & secured clients are allowed to access VistA (e.g., via network routing)
- Encrypt disks (e.g., http://www.truecrypt.org)

Don't forget to encrypt swap files if you use them

Network

• Why network security?

-VistA is accessed over the network

- •Not just clients, but also interfaces with other servers
- You can prevent a wide range of attacks on your
 VistA server by limiting access at the network level
 - •The VistA server has no need to be directly accessed from the Internet at large

Controlling Traffic

- Separate types of devices to different subnets/VLANs
- The router/firewall acts as a traffic cop
- Follow the principle of least privilege
 - Only give devices on a subnet the amount of access they require to function, but no more
 - •Devices on the phone subnet should not be able to access your VistA server

"Trusted" Networks

- Even on a trusted network, devices on a subnet may be able to see traffic destined for other devices on that subnet
 - This can happen even if you're using a switch, e.g., ARP spoofing
 - Keep unknown devices off your network
 - Use protocol-level encryption

Encryption

- Encryption should always be used when traffic is traveling over untrusted networks such as the Internet
 - -TCP/IP
 - •VPNs create an encrypted "tunnel"
 - Add-on software (e.g., stunnel http://stunnel.org)
 - Protocol-level encryption
 - •Example: HTTPS
 - Use certificates to ensure you know who you're talking to
- Something to ponder: can you really trust your LAN?

Securing Endpoints

• Even the best encryption can be defeated if the endpoint is not secure

- Key loggers and video cameras can steal passwords
- Screen scrapers can steal sensitive information
- Consider something like Dasher (http://www.inference.phy.cam.ac.uk/dasher) for password entry
- Applies to both clinical desktops at the hospital/clinic and remote VPN clients
 - If you can't control or guarantee the environment of your remote clients, don't give them access
 - Consider remote desktop (http://www.rdesktop.org/) or VNC (e.g., http://www.tightvnc.com)

Wireless

 Protect your wireless with a secure encryption standard such as WPA2

- Some vendors may have their own proprietary protocols - the robustness of these protocols is less well known
- Avoid WEP and WPA which have known weaknesses
- Also use protocol-level encryption

Assume new vulnerabilities will be found tomorrow

- VistA has its own user database and permissions scheme
 - Access Code
 - -Verify Code
 - Electronic Signature Code
 - -Keys
 - Menus

A/V/ES Codes

- Access and verify codes are similar to usernames and passwords
 - In the VA, the access code was treated as sensitive information – essentially, it was a password that the IT department also knew
- Electronic signature code is used to sign orders and notes

Security Keys

- Users are assigned various security keys
 - Multiple users can hold the same key
 - Keys typically grant permissions to the holder
 - Some are mutually exclusive
 - •ORES allows you to write orders; typically given to doctors
 - •ORELSE allows you to release orders; typically given to nurses

http://medsphere.org/docs/DOC-1361

Menus

Functionality is grouped into menus

- Tree-like structure
- Menu items typically locked with keys
- Primary menu option is executed when user first logs in
- Secondary menu options are available
 - •Allows jumping to another branch of the tree
 - •Also used to restrict access to applications
 - -OR CPRS GUI CHART

GT.M

GT.M Recommendations

- Restrict GT.M access to a group
- Set user / group ownership and permissions correctly for database files and journal directories
- Put read-only users on replicating (secondary) instances
- Use database encryption
- Use journaling and randomly audit journal files
- Consider mechanisms for logging access

27

Linux

- Dedicate servers for VistA production
- Build up from barebones with minimal required functionality; don't strip down a bloated installation
- Access only to those who need it
- Administration access via sudo
- Record <u>all</u> user logins and <u>every keystroke</u> by root users
- Implement authentication /authorization at data-center level
- Consider encrypted file systems (will require manual access on boot

http://www.puschitz.com/SecuringLinux.shtml

http://www.bastille-unix.org/

Physical

Secure access to the server

- What happens if it gets stolen?

- •Ensure any sensitive information not on an encrypted database resides on an encrypted file system
- •Swap put on encrypted file system or generate random key at startup

Secure the media

- What about backups?
 - •Backups of encrypted GT.M databases are also encrypted
- What happens if a disk crashes?

Looking ahead

• The Cloud

- Access to the virtual server is probably reasonably secure
 - •Trust (that they have done it right) but verify
- Virtual disks may or may not be secure, especially considering the long term
 - •Encrypt file systems or databases

¿¿Questions?? ¡¡Comments!!

