
[1]

GT.M Database Encryption
Protecting Data At Rest (DAR)

April 30, 2009

[2]

What it is

• Protects “data at rest” (DAR)
– Data records in database & journal files are encrypted

[3]

What it is not

• Data not at rest not protected
– During computation within the process address space

• Processes need to manipulate actual data

– In transit between systems and processes
• Database encryption is only a part of a complete security architecture

• Doesn’t include algorithms & key management
– You must choose encryption libraries

• No encryption scheme meets all needs

• Plug-in architecture for you to use encryption library of your choice

• Example reference plug-in included with GT.M

– You must implement key management
• Key management is determined by your encryption library and organizational security policy

• Reference plug-in uses GnuPG (http://gnupg.org)

• Encryption libraries (even those used by reference plug-in) and key
management are not supported by FIS

http://gnupg.org/

[4]

Limitations

• General
– Long lived keys
– Large volume of encrypted data
– No key recovery (“back doors”) built into GT.M

• Losing or forgetting your keys will make your data indistinguishable from random
ones and zeros on disk

– No protection against weak key management
• Leaving unencrypted keys on disk, even in an obscure location or “secured” with a

known password is like leaving your front door key under the doormat

• GT.M Specific
– Only BG access method is supported; MM is not supported with encryption
– Encryption is only supported for databases – use PIPE device to read/write

encrypted flat files

• Database encryption is only a part of a complete security architecture

[5]

Plug-in API

• Functions
– gtmcrypt_init()

– gtmcrypt_getkey_by_name()

– gtmcrypt_getkey_by_hash()

– gtmcrypt_hash_gen()

– gtmcrypt_encode()

– gtmcrypt_decode()

– gtmcrypt_close()

– gtmcrypt_strerror()

• Data structures
– gtmcrypt_key_t – handle to a key
– xc_fileid_ptr_t – file identifier

• Rest of the slides are about sample reference implementation

[6]

Sample Reference Implementation

• Plug-in architecture – your choice of encryption library / libraries –
with sample reference implementation

• Works out of the box with GNU Privacy Guard (libcrypto from
OpenSSL for some functionality on AIX)

• Complete source code included

• You can freely modify / adapt to your needs

• Reference implementation is supported by FIS as part of Profile/GT.M
support; encryption libraries are not supported by FIS

[7]

Ciphers & Hashes

• Symmetric ciphers are computationally faster
– Keys are hard to distribute securely

• Asymmetric ciphers are computationally slower
– Public / private keys make key distribution & management easy

• Sample reference implementation uses both:
– Data records in databases secured with symmetric ciphers

• Blowfish CFB from OpenSSL libcrypto on AIX; AES 256 CFB from GPG on all others

– Keys for symmetric ciphers secured with asymmetric ciphers: RSA from GPG
– Key ring on disk secured with password: GPG

• Key + Cipher description hashed and stored in database file header;
validated when file opened

– SHA-512 hash
– Hash can be changed separately from cipher – no need to extract / load data

[8]

Password flow within GT.M process

Password or
$gtm_passwd
environment

variable

Private key
in key ring

on disk

$HOME/.gnupg/secring.gpg or
$GNUPGHOME/secring.gpg

Decrypt
Master
Key File

Private key
in process
memory

Key file
(encrypted w
public key)

$gtm_dbkeys

Decrypt

Symmetric key
in process
memory

Encrypted
data in

db / jnl files

Encrypt &
Decrypt

Unencrypted
data in process

memory

Key file
(encrypted w
public key)

...

[9]

Password flow within GT.M process – multiple db
regions

Encrypted
Database
Dbfile 1 +

Journal file

Encrypted
Database
Dbfile 2 +

Journal File

Master Key File

$gtm_dbkeys

dat dbfile 1
key keyfile 1

dat dbfile 2
key keyfile 2

Keyring
on disk

$gtm_passwd

Symmetric key
for dbfile 1
encrypted with
Public key

Symmetric key
for dbfile 2
encrypted with
Public keyPrivate key

Symmetric key
For dbfile 2Symmetric key

For dbfile 1

[10]

$gtm_passwd

• Functional requirements
– Interactive entry

– Inherit from parent process for Job & ZSYstem commands

• $gtm_passwd cases
– Not set – mumps process assumes application code will set obfuscated password in

environment when it is ready to open database / journal file

– Null string – mumps process prompts user for password at process startup and sets
$gtm_passwd to obfuscated password

– String value – assumed to be obfuscated password (used by parent to pass password
to child process)

• Obfuscation is not encryption
– Obfuscation uses low level information accessible within the system to allow one

process to pass the password for the key ring on disk to another process on the same
system

– Obfuscated passwords are not usable outside the system, so if a process environment
is dumped and sent to FIS for a support issue, the obfuscated password does not
provide access to the actual password

[11]

$gtm_passwd – mumps process logic flow

Process
Startup

$gtm_passwd
defined?

Call
gtm_cryptinit()

GETPASS.m
gets password

$gtm_passwd

Build key file in memory
from master key file

Run until encrypted
database encountered

Add obfuscated
password to environment

Return from
gtm_cryptinit()

Yes

(Obfuscated)
Value

Null

Error (may
Be deferred)

Undefined

No

[12]

Providing passwords to utility programs

• maskpass program, e.g.
– $gtm_dist/plugin/gtmcrypt/maskpass
Enter Password: 3D303E34213F
$ echo -n "Enter Password: ";export
gtm_passwd=`$gtm_dist/plugin/gtmcrypt/maskpass|cut -f 3 -d " "`;echo
$gtm_passwd
Enter Password: 3D303E342438

• Invoke via mumps program
– Create a one line GT.M program as follows:
zcmd ZSYstem $ZCMdline Quit
and use it invoke the MUPIP or DSE command, e.g.
$ gtm_passwd="" mumps -run zcmd mupip backup -region \"*\"

[13]

Key Management

• Every user and administrator id needs a public / private key pair
– Consider putting keys in a Key server, e.g., http://pgp.mit.edu

• For every encrypted database that a user id needs access to, the
symmetric encryption key needs to be encrypted with the public key
of that user and put in a file that user id has access to

• Each user id will have a key file for each database file that user id
has access to

• Each user id can have a single database keys file that lists all the
database files that user id has access to and points to the key file for
each database file

https://pgp.mit.edu/

[14]

Key Management – Simplified schematic

Generate public /
private key pair

(Phil)

Private key
in key ring

on disk

Public
key

$HOME/.gnupg/secring.gpg
or
$GNUPGHOME/secring.gpg

Generate
Symmetric

Database key
(Helen)

Encrypt

Key file
(encrypted w
public key)

$HOME/.gnupg/secring.gpg or
$GNUPGHOME/secring.gpg

[15]

Other

• Changing database encryption requires extracting and loading the
data with MUPIP

– Use a logical multi-site (LMS) configuration to provide application
availability during the process

• Use different keys for each instance, so that if a key is compromised,
only that instance requires changing keys

• Database Operation
– Global buffer pool twice as large – each buffer now has two versions
– Some performance impact is inevitable – benchmark before putting

encrypted databases into production

• Supported platforms: AIX, HP-UX (Itanium), GNU/Linux (x86, x8664 &
Itanium), Solaris (SPARC), z/OS

[16]

Discussion

• K.S. Bhaskar
SVP, Fidelity Information Services, Inc.
ks.bhaskar@fnis.com
+1 610.578.4265

mailto:ks.bhaskar@fnis.com

	GT.M Database Encryption
	What it is
	What it is not
	Limitations
	Plug-in API
	Sample Reference Implementation
	Ciphers & Hashes
	Password flow within GT.M process
	Password flow within GT.M process – multiple db regions
	$gtm_passwd
	$gtm_passwd – mumps process logic flow
	Providing passwords to utility programs
	Key Management
	Key Management – Simplified schematic
	Other
	Discussion

