
Moving VistA Forward – a Modest
Proposal
K.S. Bhaskar
Development Director, FIS
ks.bhaskar@fisglobal.com
+1 (610) 578-4265

mailto:ks.bhaskar@fisglobal.com

Major Take-Away

• Horizontal vs. Vertical Re-engineering

Challenges Faced By A MUMPS Application

• Expert friendly
– Dated coding style
– Arcane rules, sometimes violated, exceptions not well documented
– Human interaction not always well separated from business logic

• User interface technology changes faster than business logic

• Other management concerns
– Ability to staf

• New programmers not always willing to invest time & energy in learning

• Relentless promotion by big-brand RDBMS vendors
– Long-term viability of M technology questioned

Challenges Faced By A MUMPS Application

• Expert friendly
– Dated coding style
– Arcane rules, sometimes violated, exceptions not well documented
– Human interaction not always well separated from business logic

• User interface technology changes faster than business logic

• Other management concerns
– Ability to staf

• New programmers not always willing to invest time & energy in learning

• Relentless promotion by big-brand RDBMS vendors
– Long-term viability of M technology questioned

And I'm not talking about VistA!!!

FIS Profile in the mid 1990s

• Similar concerns to those that apply to VistA today
– Terminal based primary user interface – mostly screens & menus
– Thick client written in PowerBuilder for most common users

• No thin client interface & web was just taking of
– Thousands of routines of hand-coded M

• Mostly well written – but not always
• Well-defined schema – by-passed occasionally
• Without transaction fences, application Consistency not assured after a crash

N COUNTER

I '$G(DATE) S DATE=$S($G(TJD):$D(TJD),$G(^CUVAR(2)):1)

I '$G(NBD) S NBD=1

I $G(CAL)="" S CAL="IBS"

S COUNTER=NBD

F D Q:'COUNTER

. S DATE=DATE-1

. I $$BD(DATE,CAL) S COUNTER=COUNTER-1

Q DATE

FIS Profile today

• Runs three largest real-time core banking systems in the world
– (If you know of any bigger, please do let me know)

• Stateless server processes receive and respond to messages
– Service requests are TCP/IP messages (“transfer $100 from checking to

savings”), independent of UI technology
• New UI technologies can be added with little to no change to servers

– Each request processed as an ACID transaction
• Database recovered after crash guaranteed to be application Consistent
• Maintaining Consistency with Logical Multi-Site application deployments for

business continuity are easier if all updates are wrapped in transactions
• M Locks no longer needed
• (Transactions work so well, they are even used for “batch” processing)

– SQL/JDBC access to application
– Deployable on big-brand RDBMS

• No technical obstacle preventing Profile from running on Java or other languages
(will only require retargeting code generator of PSL compiler)

Profile Architecture

JDBCJDBC

Message Transport & Queue ManagementMessage Transport & Queue Management

Interfaces

Messaging

Process Execution & Control

Services

Application

Data Access

Profile Application ServersProfile Application Servers

Profile
Object
Interface

Profile
Object
Interface

TSSPTSSP RPCRPC

SQLSQL

Classes/Methods/ProceduresClasses/Methods/Procedures

Triggers & Database ProceduresTriggers & Database Procedures

Persistence Database/ Schema / MetadataDatabase/ Schema / Metadata

SOAPSOAP MQMQ

Profile Scripting Language (PSL)

type String COUNTER // Type checking done by compiler

if 'DATE.get() set DATE = %SystemDate // Object.method notation enforces schema

if 'NBD.get() set NBD = 1 // and allows compiler to generate code

if CAL.get() = "" set CAL = "IBS" // for multiple targets

set COUNTER=NBD

for do { quit:'COUNTER // Block structure and flexible whitespacing

 set DATE = DATE-1 // can make code easier to read & maintain

 if $$BD(DATE,CAL) set COUNTER = COUNTER-1

 }

return DATE // DNA shared with M

Profile IDE

Profile Ad Hoc SQL Reporting

Access from DBVisualizer

How did Profile get here from there?

• No magic… just innumerable cycles of recoding / rearchitecting

What does this imply for VistA?

• Revolution through evolution
– Changes over a half dozen major versions over as many years
– Pick your pithy saying…

• Incremental changes are safer than big bangs
• Many small steps can make a big journey
• Patience is not the same as paralysis
• Eat the elephant one bite at a time
• Spread the cost over several budget years
• No “none of it is done till it's all done” malady
• Confidence in code comes from using it
• You can wait forever for the perfect solution
• The longest journey is the one that is never begun

What does this imply for VistA?

• Revolution through evolution
• Avoid encapsulation

– Encapsulation creates logic that resists change
• No knowledgeable programmers, changes perceived as high risk

– Unchanging code leads to ossification and fossilization
– And in turn, premature application obsolescence

What does this imply for VistA?

• Revolution through evolution
• Avoid encapsulation

• Choose a language and compile it into M
– Choice of language not important as long as it's “good enough”

• We created PSL (now free / open source software – http://fis-pip.com)
• JavaScript, PHP, Python, and Ruby will all probably work
• Java and .Net have fans and detractors
• Proprietary languages don't match free / open source ethos of VistA

– Choose a well defined subset
• Every language has its idiosyncrasies and this is not a good time to explore them

– Importance of compiling into M cannot be emphasized enough
• Granularity of change is the line, not the module
• New code and old code can share local variables and other context
• Code dynamically generated from templates in the database continues to work
• Facilitates some conversion automation – see a pattern and convert it everywhere

– Enforce coding discipline with new code, e.g., direct global accesses
• Mandatory for application deployment on non-M databases

http://fis-pip.com/

What does this imply for VistA?

• Revolution through evolution
• Avoid encapsulation

• Choose a language and compile it into M

• Re-architect as you go
– Some changes may be “lumpy” - requiring all of the application to do something

the new way, e.g., generating code for an RDBMS target required zero direct M
global access and 100% access through schema layer

– Other changes are not, e.g., use of transaction processing

What does this imply for VistA?

• Revolution through evolution
• Avoid encapsulation

• Choose a language and compile it into M

• Re-architect as you go

• Integration beats Balkanization
– It's tempting and sometimes expedient to replace pieces with “best of breed”

applications
– Breaking of pieces of core business logic converts an integrated

patient/customer-centric architecture into a stovepipe architecture – see
http://sourcemaking.com/antipatterns/software-architecture-antipatterns

– That said, sometimes slicing of functionality is the right thing to do, e.g., UI

http://sourcemaking.com/antipatterns/software-architecture-antipatterns

What does this imply for VistA?

• Revolution through evolution
• Avoid encapsulation

• Choose a language and compile it into M

• Re-architect as you go

• Integration beats Balkanization

• The value of M technology is as an execution engine
– Leverage M for what it does well – compact & eficient M code scales up to the

needs of the largest enterprises
• “Indistinguishable from line noise” doesn't matter for code generated by a compiler

– M does not need to be the next “cool” programming language
– Establishing value is the key to ongoing investment

• Compiling PSL to run Profile on a big-brand RDBMS and generating Java from PSL
established the importance of GT.M in a way that no amount of white papers or slide
decks ever could have done

What does this imply for VistA?

• Revolution through evolution
• Avoid encapsulation

• Choose a language and compile it into M

• Re-architect as you go

• Integration beats Balkanization

• The value of M technology is as an execution engine

Horizontal vs. Vertical Re-engineering!!!

Links

• FIS GT.M: http://fis-gtm.com

• FIS Profile: http://fis-profile.com

• FIS PIP: http://fis-pip.com

• Anti-patterns: http://sourcemaking.com/antipatterns/software-architecture-antipatterns

• K.S. Bhaskar / ks.bhaskar@fisglobal.com / +1 (610) 578-4265

http://fis-gtm.com/
http://fis-profile.com/
http://fis-pip.com/
http://sourcemaking.com/antipatterns/software-architecture-antipatterns
mailto:ks.bhaskar@fisglobal.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

