
VistA: a first-class citizen in
the JSON-centric future of

Health IT

Rob Tweed
M/Gateway Developments Ltd

@rtweed

Thursday, 23 January 14

What is JSON?

• JavaScript Object Notation
• A simple and compact syntax for describing

Objects of any level of complexity
• Built-in to JavaScript

– dynamically creating objects
– importing objects
– exporting objects

• Increasingly being adopted in other
languages

2

Thursday, 23 January 14

JSON v XML
• Both describe hierarchies
• JSON is rapidly replacing XML as the

lingua franca for data exchange and
description
– less verbose
– easier to parse

• almost no overhead in JavaScript
– just as readable by humans

• Can be cross-converted:
– JSON to XML can lead to ambiguities

3

Thursday, 23 January 14

Data transfer

• JSON is now the preferred syntax for
describing data for transfer between
systems

4

Thursday, 23 January 14

JSON initiatives in Healthcare

• ONC
– Mitre / Cypress Server

• HL7 FHIR
• SMART / Harvard Medical School/ Josh

Mandel
– JSON-LD

• self-defining JSON
– CCDA Receiver

• CCDA XML > JSON conversion
5

Thursday, 23 January 14

JSON initiatives in Healthcare
– VA:

• Virtual Patient Record
• Health Management Portal
• Vista Novo: HL7 FHIR

– etc...
• eg OpenEHR interfacing via JSON

6

Thursday, 23 January 14

What does JSON look like?

• var object = {};
• var array = [];

7

Thursday, 23 January 14

Simple name/value pairs

• var person = {
 name: ‘Rob Tweed’
};

person.name = ‘Rob Tweed’The Rise of JSON and Javascript in
HIT UIs

8

Thursday, 23 January 14

As many as you like

• var person = {
 firstName: ‘Rob’,
 lastName: ‘Tweed’
};

person.firstName = ‘Rob’
person.lastName = ‘Tweed’The Rise of JSON and Javascript in HIT
UIs

9

Thursday, 23 January 14

A property can be an array

• var person = {
 firstName: ‘Rob’,
 lastName: ‘Tweed’,
 children: [‘Simon’, ‘Helen’]
};

person.children[0] = ‘Simon’
Rise of JSON and Javascript in HIT UIs

10

Thursday, 23 January 14

or another object
• var person = {

 firstName: ‘Rob’,
 lastName: ‘Tweed’,
 children: [‘Simon’, ‘Helen’],
 address: {city: ‘Reigate’, country: ‘UK’}
};

person.address.city = ‘Reigate’
Rise of JSON and Javascript in HIT UIs

11

Thursday, 23 January 14

or arrays of objects
• var person = {

 firstName: ‘Rob’,
 lastName: ‘Tweed’,
 children: [‘Simon’, ‘Helen’],
 address: {city: ‘Reigate’, country: ‘UK’},
 bikes: [
 {make: ‘Trek’, model: ‘Madone 4.5’},
 {make: ‘Cannondale’, model: ‘SuperSix Ultrega Di2’}
]
};

person.bikes[1].make = ‘Cannondale’
Rise of JSON and Javascript in HIT UIs

12

Thursday, 23 January 14

etc, etc

• Complex objects of arrays of arrays of
objects of arrays......

• Hierarchical tree
– in memory, in JavaScript

13

Thursday, 23 January 14

Parsing JSON

• Incoming JSON-formatted string:
– var obj = JSON.parse(string);

• Converting a JavaScript object to a JSON
string:
– var string = JSON.stringify(obj);

14

Thursday, 23 January 14

The Rise of JavaScript

• JavaScript is the natural home of JSON
– JSON supported in many other languages too

• Grew up in the browser
• Now becoming dominant in the server:

– Node.js

15

Thursday, 23 January 14

Node.js

• Server-side JavaScript
• originally a project by Ryan Dahl
• open source
• sponsored by Joyent
• massively popular
• Modules available for anything you can

think of
• Approved technology at the VA

16

Thursday, 23 January 14

JSON persistence?

• Document databases:
– MongoDB
– CouchDB

17

Thursday, 23 January 14

JSON persistence?

• Document databases:
– MongoDB
– CouchDB
– and Mumps too

• GT.M - via NodeM interface
• Caché - via built-in Node.js interface
• GlobalsDB - via built-in Node.js interface

• hierarchical database, so a natural and very
efficient fit

18

Thursday, 23 January 14

Node.js Interface

Thursday, 23 January 14

JavaScript Document Storage

^%zewdSession("session",4020,"newGridData",0,"col1")=1
^%zewdSession("session",4020,"newGridData",0,"col2")=1
^%zewdSession("session",4020,"newGridData",0,"name")="rec1"
^%zewdSession("session",4020,"newGridData",1,"col1")=4
^%zewdSession("session",4020,"newGridData",1,"col2")=4
^%zewdSession("session",4020,"newGridData",1,"name")="rec4"

 var gridData = [
 {col1: 1, col2: 1, name: ‘rec1’},
 {col1: 4, col2: 4, name: ‘rec4’}
];
 var session = new ewd.mumps.GlobalNode(‘%zewdSession’, [4020]);
 session.$('newGridData')._setDocument(gridData);

Thursday, 23 January 14

JavaScript Document Storage
^%zewdSession("session",4020,"newGridData",0,"col1")=1
^%zewdSession("session",4020,"newGridData",0,"col2")=1
^%zewdSession("session",4020,"newGridData",0,"name")="rec1"
^%zewdSession("session",4020,"newGridData",1,"col1")=4
^%zewdSession("session",4020,"newGridData",1,"col2")=4
^%zewdSession("session",4020,"newGridData",1,"name")="rec4"

var gridData = session.newGridData._getDocument();

[
 {col1: 1, col2: 1, name: ‘rec1’},
 {col1: 4, col2: 4, name: ‘rec4’}
];

Thursday, 23 January 14

Invoking Mumps code

• Can invoke functions from within the back-
end JavaScript module:

22

var result = ewd.mumps.function('getPatientVitals^MyEHR',
 params.patientId,
 params.date);

Thursday, 23 January 14

Invoking Mumps code

• Can invoke functions from within the back-
end JavaScript module:

23

var result = ewd.mumps.function('getPatientVitals^MyEHR',
 params.patientId,
 params.date);

This is the equivalent of the Mumps code:

 set result=$$getPatientVitals^MyEHR(patientId,date)

Thursday, 23 January 14

Invoking Mumps code

• Can invoke functions from within the back-
end JavaScript module:

24

var result = ewd.mumps.function('getPatientVitals^MyEHR',
 params.patientId,
 params.date);

This is the equivalent of the Mumps code:

 set result=$$getPatientVitals^MyEHR(patientId,date)

Then use _getDocument() to retrieve Vitals from Global to
corresponding JSON

Thursday, 23 January 14

Browser-based Applications

• Browsers used to be limited to “web
applications”
– HTTP Protocol
– Ajax to add dynamic access to back-end

• still limited by HTTP protocol

25

Thursday, 23 January 14

Browser-based Applications

• Now it’s a client-server environment
– lightweight
– event-driven

• WebSockets
– HTML5
– bi-directional socket connection
– event-driven at each end

• No more polling!

26

Thursday, 23 January 14

EWD.js

• Framework for JavaScript applications
• Mumps databases abstracted to appear to

be JSON stores
• Also supports MongoDB
• Fully event-driven
• Client/server in the browser

27

Thursday, 23 January 14

Node.js Interface

EWD.js Runs
in Node.js

Thursday, 23 January 14

EWD.js = 100% JSON

• Browser to/from back-end:
– JSON messages via WebSockets

• Data storage:
– JSON storage in MongoDB or Mumps

• _setDocument(JSON)

• Data retrieval:
– JSON from MongoDB or Mumps:

• _getDocument()

29

Thursday, 23 January 14

So VistA is fully JSON-enabled

• Today!

• Automatically, without any other
technologies than Node.js + EWD.js

30

Thursday, 23 January 14

JSON initiatives in Healthcare

• ONC
– Mitre / Cypress Server

• HL7 FHIR
• SMART / Harvard Medical School/ Josh

Mandel
– JSON-LD

• self-defining JSON
– CCDA Receiver

• CCDA XML > JSON conversion
31

Thursday, 23 January 14

JSON initiatives in Healthcare
– VA:

• Virtual Patient Record
• Health Management Portal
• Vista Novo: HL7 FHIR

– etc...

32

Thursday, 23 January 14

Reinventing the JSON Wheel?

• Opportunity to consolidate and co-ordinate
the various JSON initiatives
– one common JSON representation of the

patient?

– VistA data to/from JSON
– EWD.js:

• browser-based access
• Web Service access

33

Thursday, 23 January 14

HL7 FHIR Using EWD.js

Or

EWD.js on

Thursday, 23 January 14

HL7 FHIR = REST

• RESTful interfaces are a key part of HL7
FHIR
– http://localhost:8081/fhir/patient/@1/observation
– Returns JSON

• specific HL7 FHIR syntax

35

Thursday, 23 January 14

http://localhost:8081/fhir/patient/@1/observation
http://localhost:8081/fhir/patient/@1/observation

EWD.js and REST

• EWD.js doesn’t have a REST interface
built in
– but it does have secured HTTP-based

WebService interface built-in
– Node.js: Restify - off-the-shelf REST server

module

• Restify-based module: ewdrest
– rewrites REST URLs as digitally-signed

EWD.js HTTP Web Service Requests
36

Thursday, 23 January 14

HL7 FHIR handling in EWD.js

• FHIRServer module for EWD.js
– parsing incoming FHIR requests

• interfacing to VistA / FileMan APIs
– read and write

– Current version limited to what’s required for
the Vista Novo demo

– /observation : gets all observations for a patient
– /observation/create: saves a new observation

• ready for extension by community
• will be posted on GitHub
• will be Apache 2 licensed

37

Thursday, 23 January 14

ewdrest
Server

REST
Requests

Signed
EWD.js

Web Service
Request

EWD.js
Server

GT.M
Caché or
MongoDB

Back-end
module

ewdrest
Server

REST
Response

Web Service
JSON

Response

EWD.js
Server

GT.M
Caché or
MongoDB

Back-end
module

Thursday, 23 January 14

ewdrest
Server

REST
Requests/
Responses

EWD.js
Server

EWD.js
Server

GT.M
Caché or
MongoDB

Back-end
module

GT.M
Caché or
MongoDB

Back-end
module

etc…

Thursday, 23 January 14

VistA

Patient
CCDA
(XML)

Patient
CCDA
(JSON)

EWD.js / Node.js

File

_setDocument()

Stored in Mumps DB

George Lilly’s
work

Thursday, 23 January 14

JSON-formatted CCDA
Stored in Mumps

Or MongoDB

getVitals():
JSON-format

Josh Mandel’s
Blue-button logic

Adapted for EWD.js

EWD.js

getObservation():
HL7 FHIR JSON-format

Forwarded to FHIR REST Server

VistA

getVitals():
HL7 FHIR

JSON-format

Mumps function
API wrapper

EWD.js
Back-end

FHIR
Module

Thursday, 23 January 14

ewdrest
Server

FHIR
REST

Requests

Secure
EWD.js

Web Service
Requests

EWD.js
Server

GT.M:
CCDA

Database

EWD.js
Server

globalsDB

EWD.js
Server

GT.M

Blood-pressure
Application

George Lilly's
VistA Server

My EC2 Server

Definitive Blood Pressure
Results from VistA

Patient-entered
Blood Pressure results

Servers at my home in UK

VistA

FH
IR

S
erver.js

FH
IR

S
erver.js

Thursday, 23 January 14

