
Naming Your Vista Environments & Repositories

On the Road to Automating Vista Distribution & Standardization

Vista Community Meeting 2019-06-04/05
George Mason University
Fairfax, Virginia

Frederick D. S. Marshall
Vista Expertise Network

rick.marshall@vistaexpertise.net

Repository Classes
(draft, 2019-06-05)

Au Gold repository

Ag Silver repository

Cu Copper repository

Distribution Repo Classes Standardization
[dialects]

Innovation
[applications]

Both
[applications/dialects]

Forum server
(cathedral) f/lib/gold

Internet server
(bazaar) i/lib/copper

Vista dev server
(balance) d/lib/silver

p/lib/gold

p/lib/copper

Vista
production

server
(target)

p/lib/silver

Pt Platinum repository

Production Repo Class

Production
[systems]

a/lib/platinum/p Vista
analysis server
(subscriber)a/lib/platinum/q

Vista
prod server p/run

Vista
prod server q/run

Original Mumps VM: Jobs, Directories, UCIs, Volume Sets, & Machines
(draft, 2019-06-05)

Machine: the computer hardware controlled by the Mumps virtual machine.

Mumps Directory: a set of names within which each name is unique, mainly globals & routines, sort of lock-names & devices.
User Class Identifier (UCI): a Mumps environment, containing a directory of globals, one of routines, & a lock-names and device pool.
Volume Set: a small set of related UCIs.
Mumps Virtual Machine (VM): Mumps as operating system for computer, hiding nonportable details, appearing as an abstract computer.

Machine (PDP-11)

Mumps VM

Volume Set

UCI

Routine Directory Global Directory Lock Table

Input/Output Device Pool

Mumps Process/Job

Original Mumps VM 2: Prototype Configuration
(draft, 2019-06-05)

Manager UCI: a Mumps environment containing system-management software plus software shared with other UCIs in volume set.

Machine (PDP-11)

Mumps VM

Volume Set “ROU”

Admissions UCI “ADM”
aka “ADM,ROU”

Job 1: Admissions

Pharmacy UCI “PHA”
aka “PHA,ROU”

Lab UCI “LAB”
aka “LAB,ROU”

Manager/Library UCI “MGR”
aka “MGR,ROU”

Job 2: Admissions Job 3: Pharmacy Job 4: Pharmacy Job 5: Lab Job 6: Lab

Job ID: a value that uniquely identifies this process within a pool of jobs determined by the Mumps implementor; typically per machine.
Mumps Implementor: the person or institution providing or selling a standard-compliant version of Mumps.

Vista Cookbook: a manual describing how to configure the Mumps VM & machine to support Vista.

Extended Reference: to access a routine ^RUNME or global ^DATA in another UCI, do ^[“PHA”]RUNME or write ^[“LAB”]DATA.
to access it in another volume set, do ^[“PHA”,”ROU”]RUNME or write ^[“LAB”,”ROU”]DATA.

Prototype DHCP Configuration: Plessey desktop machine with one UCI per major application, sign in by selecting UCI

Mumps VM

Lab Volume Set “LAB”

Manager/Library UCI “MGR”
aka “MGR,LAB”

Mumps VM

Pharmacy Volume Set “PHA”

Manager/Library UCI “MGR”
aka “MGR,PHA”

Original Mumps VM 3: Typical Early Configuration
(draft, 2019-06-05)

Admissions Machine (PDP-11)

Mumps VM

Admissions Volume Set “ADM”

Production UCI “LIV”
aka “LIV,ADM”

Job 1: Clerk

Production UCI “LIV”
aka “LIV,PHA”

Production UCI “LIV”
aka “LIV,LAB”

Manager/Library UCI “MGR”
aka “MGR,ADM”

Job 2: Clerk Job 1: Pharmacist Job 2: Pharmacist Job 1: Lab Tech Job 2: Lab Tech

Pharmacy Machine (PDP-11) Lab Machine (PDP-11)

Early DHCP Configuration: each major application on a separate PDP-11, users segregated by application. Environments named according to
the application they contain.

Original Mumps VM 4: Prototype Lifecycle Configuration
(draft, 2019-06-05)

Machine (PDP-11)

Mumps VM

General Volume Set “ROU”

Production UCI “VAH”
aka “VAH,ROU”

Job 1: Live

Test UCI “TST”
aka “TST,ROU”

Development UCI “DEV”
aka “DEV,ROU”

Manager/Library UCI “MGR”
aka “MGR,ROU”

Job 2: Live Job 3: Tester Job 4: Tester Job 5: Developer Job 6: Developer

Prototype Lifecycle Configuration: to develop one application, separate live production code in VAH from code being tested in TST from code
being developed in DEV. Unfortunately, shared MGR UCI means development of MGR routines can disrupt production. Environment names
differ to help clue everyone in about how carefully to tread in the current environment.

Mumps VM

Development Volume Set “DEV”

Manager/Library UCI “MGR”
aka “MGR,DEV”

Mumps VM

Test Volume Set “TST”

Manager/Library UCI “MGR”
aka “MGR,TST”

Original Mumps VM 5: Safer Lifecycle Configuration
(draft, 2019-06-05)

Production Machine (PDP-11)

Mumps VM

Production Volume Set “ROU”

Production UCI “VAH”
aka “VAH,ROU”

Job 1: Live

Test UCI “TST”
aka “TST,TST”

Development UCI “DEV”
aka “DEV,DEV”

Manager/Library UCI “MGR”
aka “MGR,LIV”

Job 2: Live Job 1: Tester Job 2: Tester Job 1: Developer Job 2: Developer

Test Machine (PDP-11) Development Machine (PDP-11)

Improved Lifecycle Configuration: separating development from testing from production insulates production users from development and
testing activities. Even a runaway job that consumes or crashes the CPU can’t hurt production in this configuration. Environment names are
usually different, to help make the configuration system by ensuring programmers are less likely to be confused about which environment they are
in, so they don’t accidentally do development in production.

Mumps VM

Original Mumps VM 6: Replication/Translation Configuration
(draft, 2019-06-05)

Production Volume Set “ROU”

Production Machine 1 (PDP-11)

Production Volume Set “ROU”

Production UCI “VAH”
aka “VAH,ROU”

Job 1: Live

Manager/Library UCI “MGR”
aka “MGR,ROU”

Job 2: Live

Mumps VM

Test Volume Set “TST”

Manager/Library UCI “MGR”
aka “MGR,TST”

Production UCI “TST”
aka “TST,TST”

Job 1: Tester Job 2: Tester

Test Machine (PDP-11)Production Machine 2 (PDP-11)

Production UCI “VAH”
aka “VAH,ROU”

Job 1: Live

Manager/Library UCI “MGR”
aka “MGR,ROU”

Job 2: Live

Translation: global sets & kills on machine 2 reach across local network to machine 1.
Replication: global sets & kills on machine 1 copied to machine 2.

Incremental Server Upgrade Configuration: used to add more horsepower by adding more servers, which share the globals and routines through
one of two strategies. Environment names are kept identical, along with the rest of the Mumps database.

Mumps VM

Original Mumps VM 7: Failover Configuration
(draft, 2019-06-05)

Secondary Volume Set “ROU”

Primary Machine (PDP-11)

Primary Volume Set “ROU”

Production UCI “VAH”
aka “VAH,ROU”

Job 1: Live

Manager/Library UCI “MGR”
aka “MGR,ROU”

Job 2: Live

Mumps VM

Test Volume Set “TST”

Manager/Library UCI “MGR”
aka “MGR,TST”

Production UCI “TST”
aka “TST,TST”

Job 1: Tester Job 2: Tester

Test Machine (PDP-11)Secondary Machine (PDP-11)

Production UCI “VAH”
aka “VAH,ROU”

Manager/Library UCI “MGR”
aka “MGR,ROU”

Failover Configuration: for 24/7/365 reliable uptime, we need to plan for failure. We set up a failover machine as a safety net, with duplicated
contents from the primary the users are on. If the primary crashes, it takes only seconds to switch users over to the secondary, a process called
failover, where they can pick up exactly where they left off on the primary, since it was a copy kept in synch by replication. The primary machine
can then be repaired or replaced and then reintroduced as the failover machine. Environment names are intentionally kept identical, so the
secondary looks to the users as though it is the same machine.

Hosted Mumps VM: Original Mumps Virtual Machine + Operating System
(draft, 2019-06-05)

Operating System: at first, a set of features to insulate most Mumps jobs from; increasingly, a set of services to provide portably.

Operating System (VMS, DOS, Windows, Unix)

Mumps VM

Volume Set

UCI

Routine Directory Global Directory Lock Table

Input/Output Device Pool

Mumps Process/Job

Machine (PDP-11, PC, VAX, Alpha, etc.)

Mumps VM

Print Volume Set “ROU”

Manager/Library UCI “MGR”
aka “MGR,ROU”

Data Volume Set “ROU”

Manager/Library UCI “MGR”
aka “MGR,ROU”

Hosted Mumps VM 2: Cluster Configuration
(draft, 2019-06-05)

Compute Volume Set “ROU”

Production UCI “VAH”
aka “VAH,ROU”

Job 1: User

Production UCI “VAH”
aka “VAH,ROU”

Production UCI “VAH”
aka “VAH,ROU”

Manager/Library UCI “MGR”
aka “MGR,ROU”

Job 2: User Job 1: Task Job 2: Task

Compute Server (VAX, Alpha, etc.) Data Server (VAX, Alpha, etc.) Print Server (VAX, Alpha, etc.)

Operating System (VMS, Unix) Operating System (VMS, Unix) Operating System (VMS, Unix)

Data Server: a computer dedicated more or less full time to serving up translated globals to other servers.
Compute Servers: a group of computers dedicated to running Mumps user jobs; almost all global accesses are translated to data server(s).
Print Servers: one or more computers dedicated to running Mumps background jobs (tasks); most globals are translated.
Load Balancing: a system of ensuring no server is underutilized or overutilized.

Cluster: a group of nodes (computers, “boxes”) that share a database, spreading out the load of the jobs across multiple servers, often specialized.

Mumps VM

Print Volume Set “ROU”Data Volume Set “ROU”

Hosted Mumps VM 3: Simplified Cluster Configuration
(draft, 2019-06-05)

Compute Volume Set “ROU”

Production UCI “VAH”
aka “VAH,ROU”

Job 1: User

Production UCI “VAH”
aka “VAH,ROU”

Production UCI “VAH”
aka “VAH,ROU”

Job 2: User Job 1: Task Job 2: Task

Compute Server (VAX, Alpha, etc.) Data Server (VAX, Alpha, etc.) Print Server (VAX, Alpha, etc.)

Operating System (VMS, Unix) Operating System (VMS, Unix) Operating System (VMS, Unix)

No More MGR UCI: Eventually, surprisingly late, we noticed there was no longer any reason to have a MGR UCI, because these more powerful
computers and Mumps implementations are perfectly capable of storing all applications in the same UCI. Indeed, we had been doing so for
some time - we had to - because in the more modern Vista architecture the applications are integrated and communicate closely, which is
awkward if they are siloed into separate UCIs. With only one production UCI, there’s no point any more to MGR UCIs, nor to %-routines and -
globals, so in the late 1990s we finally noticed and eliminated the MGR UCI. %-routines and -globals are slowly being phased out.

Operating System (VMS, Unix)

Hosted Mumps VM 4: Native Configuration (Datatree & Greystone Implementations)
(draft, 2019-06-05)

Routine Directory 1
/home/osehra/r/

(/home/osehra/o/)

Mumps Job

Server

Directory: an actual operating-system directory containing routine files or global dataset files.

Global Directory 2
/home/osehra/g/scratch.gld

Lock Table

Device PoolRoutine Directory 2
/usr/local/lib/yottadb/r122/

Mumps Job: an operating-system process that is running the Mumps VM software.

Global Directory 1
/home/osehra/g/default.gld

Routine Source File: the source text for a Mumps routine stored in a text file, e.g., RUNME.m or _wfhform.m.

Global Dataset File: a binary file containing one or more global variables, often grouped into a database segment, e.g., default.gld.
Routine Object File: the compiled binary file for a Mumps routine, e.g., RUNME.o or _wfhform.o.

The Native Configuration Revolution: what if the Mumps job contained its own virtual machine, instead of the other way around?

Standard Mumps VM: Jobs, Environments, Systems, & Machines
(draft, 2019-06-05)

Machine

Mumps VM

Routine Environment “ENV”
or “UCI,VOL”

Global Environment “ENV”
or “UCI,VOL”

System “vendor #,something else”

Mumps Process/Job “job id”

Mumps System: a job id environment, a set of jobs within which each job id is unique.

Mumps Environment: directory of names, set of names within which each name is unique, applies to globals, lock-names, routines, & devices.

Lock-Name Environment “ENV”
or “UCI,VOL”

Device Environment “ENV”
or “UCI,VOL”

Extended Reference: to access a routine ^RUNME or global ^DATA in another environment, do ^|“LIV”|RUNME or write ^|“LIV”|DATA.
there are no UCIs or volumes, but names can look like them, such as do ^|“LIV,VOL”|RUNME or write ^|“LIV,VOL”|DATA.

Mumps 1995 Virtual Machine: the new Mumps standard significantly changed the original Standard Mumps Virtual Machine, with an eye
toward connecting Mumps environments with each other and with external software written in other languages. The old conventional
implementor terminology & syntax was overlaid with new standards. But although this extended the original Mumps virtual machine, it did not
take into account the inside-out transformation of the Native Configuration, nor its re-centering in the operating system. Mumps 1995 focused
on portability, with hiding the operating system except through defined interfaces, which left Mumps with two incompatible models.

System “vendor #,system name,system code,dba community,rev #)

Mash VM: Jobs, Environments, Systems, & Operating Systems
(draft, 2019-06-05)

Operating System (VMS, DOS, Windows, Unix)

Volume “volume”

Environment “uci,volume” (aka “uci”)

home directory
now = /home/osehra/

soon = /home/uci-volume/

Routine
Environment

~/run/routines/
~/run/objects/

Global
Environment

~/data/
globals/

Mumps Job “job id”

Lock-Name
Environment

Device
Environment

Server “vendor #,server name & #,server code & #,dba community,rev #” (system, computer, node, box, machine, etc.)

Sysadmin-
Script

Environment

~/run/unix/

Web-Interface
Environment

~/www/

Repo-Library
Environment

~/lib/

Scratch-File
Environment

~/tmp/

Mumps Advanced Shell Virtual Machine: the new Mumps infrastructure layer needs to marry the Mumps 1995 model with the native-
configuration model, to make the operating system visible and central to Mumps computing, to help wrap up and provide access to operating-
system services. Mumps needs to fully embrace the larger computing world it is part of, so it needs to standardize how Mumps is configured
within that world, to produce predictable, automatable architecture those features can be built upon.

But it also needs to preserve enough of the terminology of the original Mumps Virtual Machine so existing infrastructure software continues to
work and make sense to sysadmins. This model maps the original Mumps, Mumps 1995, & Native Configuration models onto a new virtual
machine. These are therefore the semantic elements our new Mash standard needs to assign unique names to.

Mash Naming 1: Dialect & Developer
(draft, 2019-06-05)

Developer/Development Shop: Development organization that manages an entire Vista dialect; used to create dialect names

va Veterans Affairs

vb Indian Health Service

vo OSEHRA

vv Vista Expertise Network

vw WorldVistA

vx Document Storage Systems

vs Medsphere

open & healthy incomplete proprietary troubled defunct n/a

Dialect: Vista codebase managed as a whole & partly compatible w/other dialects; gold repos transport entire dialects; need codes for names

vac CASS Mumps Systems (Veterans Affairs) [FOIA]

vad DHCP (Veterans Affairs) [FOIA]

vav VA Vista (Veterans Affairs) [none]

vaf FOIA Vista (Veterans Affairs) [FOIA]

vbr IHS RPMS (Indian Health Service) [none]

vbf FOIA RPMS (Indian Health Service) [FOIA]

vcd CHCS (Department of Defense/SAIC) [???]

vho Hui Open Vista (Pacific Hui) [???]

vmu MUSTI (Finnish Universities) [???]

vmi MINPHIS (Nigeria) [private]

vos Osehra Vista (Open Source EHR Alliance) [Apache 2.0]

vso Medsphere Open Vista (Medsphere) [???]

vst GFT ("Medsphere") Fileman (gft) [Apache 2.0]

vvp VAPALS (Vista Expertise Network) [Apache 2.0]

vvn Angel (Vista Expertise Network) [VCL 1.0]

vvf FLAP (Vista Expertise Network) [Apache 2.0]

vwo Open Vista (WorldVistA) [???]

vwh Vista Office EHR (Health & Human Services/WorldVistA) [???]

vwe World Vista EHR (WorldVistA) [AGPL 3.0]

vxd vx Vista (Document Storage Systems) [private]

vxo Open vx Vista (Document Storage Systems) [Apache 2.0]

vzz vista dialect undeclared or unknown

mdc Mumps Development Committee (Vista Expertise Network) [Apache 2.0?]

zzz not vista-related

mgy YottaDB (YottaDB) [AGPL 3.0]

Mash Naming 2: Application, Adopter, Site, & System
(draft, 2019-06-05)

Adopter: runs one or more Vista
production sites, each with one or
more Vista production systems

A* Veterans Affairs

B* Indian Health Service

G*/I* Department of Defense

J* Nonfederal adopter

U* International adopter

K* Individual Vista hardhat

ZZ* Unknown adopter

Site: Vista production organization
or location, with one or more Vista
production systems

APG VA Phoenix

BZX IHS Phoenix

??? DOD Hospital X

JVV Vista Expertise Network

UJO Kingdom of Jordan

KBAF Frederick D. S. Marshall (toad)

ZZZ Unknown site

System: Vista production computer
or cluster, running one or more
Vista environments

APGSAMI VA Phoenix VAPALS-ELCAP Server

BZXSAMI IHS Phoenix VAPALS-ELCAP Server

?????? DOD CHCS Server X

JVVSAMI Avicenna (VAPALS-ELCAP Dev Server)

UJOMOH Jordan Ministry of Health Server

KBAFHAN Hanbalur (toad Workstation)

ZZZZZZ Unknown system

$System: Mumps intrinsic special variable uniquely distinguishing this Mumps system from all others

47,avicenna,jvvsami,vista,1

47,avicenna,jvvsami,vista,1 $system for Avicenna (VAPALS-ELCAP Dev Server)

47
Mumps Implementor #: uniquely

assigned by MDC 1
System Version #: increment when upgrade
would affect system performance

avicenna
System Name: unusual or unique,

assigned by site, user friendly vista
Mumps DBA Code: uniquely identifying database
administration authority/community, registered with MDC

jvvsami
System Code: user-friendly code uniquely identifying system
within DBA community

43 = Micronetics
44 = MGlobal
45 = PFCS Corporation
46 = Intersystems Corporation

47 = Greystone
48 = ESI Technology
50 = Mumps v1

VNNS: The Vista Name- and Number-space System (VNNS), managed by OSEHRA’s Database Administration Committee (DBAC), assigns
namespaces & numberspaces to each Vista application, as well as to adopters, sites, vendors, and individual hardhats, which can be used to
help develop unique names for UCIs, volumes, and systems. For example, SAMI is the namespace for the VAPALS-ELCAP application.

Mash Naming 3: UCI & Volume
(draft, 2019-06-05)

UCI: old word for an environment,
short name of environment, pick from
or extend list, describes lifecycle role

Volume: collection of UCIs/environments, aka
“volume set”

liv live/production environment

tst test environment

dev development environment

fld field-test environment

dem demo environment

rel release environment

ver verification environment

jvvsami-18.0-vvpjvvsami vvp
Dialect Code: target dialect for
software, “vvp” = VAPALS-ELCAP

jvv
Dialect Source’s Site Prefix: “j” for nonfederal

sites, “vv” for Vista Expertise Network sami
Vista Application Namespace: Vista application
developed in these environments

System Code: user-friendly code uniquely
identifying system within DBA community

apg VA Phoenix Vista environments

apgsami VA Phoenix VAPALS-ELCAP environments

jvva VAPALS-ELCAP VA field environments

jvvref VAPALS-ELCAP Vista reference environments

jvvsami-18.0-vvp VAPALS-ELCAP v18.0 development environments

jvvhop VAPALS-ELCAP Vista Forum environments (Hopper system)

kbafmdc Frederick D. S. Marshall Mash development environments

jvvmdc VAPALS-ELCAP Mash development environments

jvvdi-22.2-vst VEN GFT Fileman v22.2 environments

jvvc9c VEN Central Regional Hospital field environments

18.0
Application Version #: version of application
developed in these environments

Volume Names: Using dialect names, adopter names, application namespaces, & version #s, we can construct unique volume names.
UCI Names: Short UCI names will follow the old conventions. Long UCI names will be uci,vol and serve as environment names.

Mash Naming 4: Environment, Home Directory, & Home Path
(draft, 2019-06-05)

Environment Description

liv,apg VA Phoenix Vista live environment

liv,apgsami VA Phoenix VAPALS-ELCAP live environment

vav,jvva VAPALS-ELCAP VA Vista field environment

dev,jvvsami-18.0-vvp VAPALS-ELCAP v18.0 development environment

tst,apg VA Phoenix Vista test environment

dev,apg VA Phoenix Vista development environment

tst,apgsami VA Phoenix VAPALS-ELCAP test environment

liv,jvva VAPALS-ELCAP VA Vista field live environment

tst,jvva VAPALS-ELCAP VA Vista field test environment

rel,jvva VAPALS-ELCAP VA release environment

tst,jvvsami-18.0-vvp VAPALS-ELCAP v18.0 test environment

fld,jvvsami-18.0-vvp VAPALS-ELCAP v18.0 field environment

dev,jvvsami-19.0-vvp VAPALS-ELCAP v19.0 development environment

dev,kbafvvp Toad’s VAPALS-ELCAP development environment

dev,kbafmdc Toad’s Mash development environment

dev,kbafvvn Toad’s Angel Taskman development environment

liv-apg

liv-apgsami

vav-jvva

dev-jvvsami-18.0-vvp

tst-apg

dev-apg

tst-apgsami

liv-jvva

tst-jvva

rel-jvva

tst-jvvsami-18.0-vvp

fld-jvvsami-18.0-vvp

dev-jvvsami-19.0-vvp

dev-kbafvvp

dev-kbafmdc

dev-kbafvvn

Home Path

Now: /home/osehra/

Soon: /home/dev-jvvsami-18.0-vvp/

Now: /home/osehra/

Soon: /home/liv-apgsami/

Home DirectoryEnvironment Name

Now: /home/osehra/

Soon: /home/kbafvvp/

Under the Mash Virtual Machine model, naming the environment includes standardizing how home directories and paths are named.

/home/liv-apg/Would be:

Soon: /home/liv-jvva/

Phoenix VAPALS-ELCAP System “akimel”
generic id = “47,akimel,apgsami,vista,1”

Mash VM 2: Sample 1, Phoenix VAPALS-ELCAP Server
(draft, 2019-06-05)

Operating System (Linux)

Phoenix VAPALS-ELCAP Volume “apgsami”

Phoenix VAPALS-ELCAP Live Environment “liv,apgsami”
/home/liv-apgsami/

Job 1: VAPALS-ELCAP User

Phoenix VAPALS-ELCAP Primary Server “akimel1”
$system=“47,akimel1,apgsami1,vista,1”

Phoenix VAPALS-ELCAP Test Environment “tst,apgsami”
/home/tst-apgsami/

Job 2: VAPALS-ELCAP User

Operating System (Linux)

Phoenix VAPALS-ELCAP Volume “apgsami”

Phoenix VAPALS-ELCAP Live Environment “liv,apgsami”
/home/liv-apgsami/

Phoenix VAPALS-ELCAP Secondary Server “akimel2”
$system = “47,akimel2,apgsami2,vista,1”

Phoenix VAPALS-ELCAP Test Environment “tst,apgsami”
/home/tst-apgsami/

Job 1: VAPALS-ELCAP Tester

VAPALS-ELCAP Development System “avicenna”
generic id = “47,avicenna,jvvsami,vista,1”

Mash VM 3: Sample 2, VAPALS-ELCAP Development & Field Servers
(draft, 2019-06-05)

Operating System (Linux)

VAPALS-ELCAP v18.0 Volume “jvvsami-18.0-vvp”

v18.0 Dev Environment “dev,jvvsami-18.0-vvp”
/home/dev-jvvsami-18.0-vvp/

VAPALS-ELCAP Development Server “avicenna”
$system=“47,avicenna,jvvsami,vista,1”

v18.0 Test Environment “tst,jvvsami-18.0-vvp”
/home/tst-jvvsami-18.0-vvp/

v18.0 Field Environment “fld,jvvsami-18.0-vvp”
/home/fld-jvvsami-18.0-vvp/

VAPALS-ELCAP v19.0 Volume “jvvsami-19.0-vvp”

v19.0 Dev Environment “dev,jvvsami-19.0-vvp”
/home/dev-jvvsami-19.0-vvp/

VAPALS-ELCAP VA Field System “geber”
generic id = “47,geber,jvva,vista,1”

Operating System (Linux)

VAPALS-ELCAP Field Volume “jvva”

Field Live Environment “liv,jvva”
/home/liv-jvva/

VAPALS-ELCAP VA Field Primary Server “geber1”
$system=“47,geber1,jvva1,vista,1”

Field Test Environment “tst,jvva”
/home/tst-jvva/

Operating System (Linux)

VAPALS-ELCAP Field Volume “jvva”

Field Live Environment “liv,jvva”
/home/liv-jvva/

VAPALS-ELCAP VA Field Secondary Server “geber2”
$system = “47,geber2,jvva2,vista,1”

Field Test Environment “tst,jvva”
/home/tst-jvva/

VA Vista Field Environment “vav,jvva”
/home/vav-jvva/

VAPALS VA Release Environment “rel,jvva”
/home/rel-jvva/

Vista Forum System “hopper”
generic id = “47,hopper,jvvhop,vista,1”

Mash VM 4: Sample 3, Vista Forum Server
(draft, 2019-06-05)

Operating System (Linux)

Vista Forum Volume “jvvhop”

Vista Forum Server “hopper”
$system=“47,hopper,jvvhop,vista,1”

Vista Forum Volume “jvvref ”

Phoenix VAPALS-ELCAP System “akimel”

VAPALS VA Release Distributions
FOIA Vista Reference Environment “vaf,jvvref ”

/home/vaf-jvvref/

VAPALS-ELCAP Development System
“avicenna”

VA Vista Reference Environment “vav,jvvref ”
/home/vav-jvvref/

OSEHRA Vista Reference Environment “vos,jvvref ”
/home/vos-jvvref/

Vista Forum Live Environment “liv,jvvhop”
/home/liv-jvvhop/

WorldVistA Reference Environment “vwe,jvvref ”
/home/vwe-jvvref/

VAPALS-ELCAP VA Field System “geber”

VAPALS Reference Environment “vvp,jvvref ”
/home/vvp-jvvref/

Repo Naming: A Complete Lack of Standards
(draft, 2019-06-04)

Repository Description

FILEMAN

KERNEL-GTM

BROKER

M-Web	Server which of these 3 does my environment depend on?

Fileman where should I look to find the application repo?

VA	FILEMAN

how are these related to official patches?

Kernel	GTM

RPC	Broker sort in 3 different places in big directory

XWB

M	Web	Server

m-web-server

M	UNIT
what syntax should repo names have?

M-Unit

Random	Stuff

Random	Vista	Utilities what is even in these?

Important

Repository Name Imagine a directory containing hundreds or even thousands of
repository clone directories, from many dozens of sources,
inside and outside the Vista community.

Some are the official software distribution directories our
environment depends on. Others are local extensions or
development directories. They come from countless developers
from many different repo hosting sites.

How can we tell which is which? Where do we look for the
software we need?

This is a teeny tiny sampling of such a directory to illustrate a
few of the issues with the status quo.

Mash Naming 5: Gold, Silver, & Copper Repo & Clone Names
(draft, 2019-06-05)

Home Path to Repos

/home/dev-jvvsami-18.0-vvp/lib/

copper

silver

gold standardized, automated distribution of entire vista dialects for production installation

standardized, manual distribution of dialects & applications for production installation

non=standardized, manual distribution of software for any purpose

Gold Repo & Clone Names

vaf-foia-vistavafDialect Code: FOIA Vista
(Veterans Affairs) [FOIA] foia-vista Dialect Name: FOIA Vista (Veterans Affairs) [FOIA]

Silver Repo Clone Names

a-sami-vapals-elcap--vo-osehra-githubaAction Code: r = read-only, a
= active development (r/w)

samiSoftware Namespace: computable code
describing repo contents, namespace vapals-elcap Software Name: human-readable name of

repo contents, lowercase, hyphens, short

voSoftware Source Code: hardhat namespace or vista dialect
source code or etc., vo = osehra, kban= sam habiel, etc.

osehra Software Source Username: username of user at repo
hosting system.

github
Software Source System:
name of repo host system.

Copper Repo Clone Names

r-_ut-m-unit--m-unit--kbbp-joelivey-github

m-unit Remote Repo Name: because the remote repo is not named
_ut-m-unit, the actual name is included

Remote Repo Name: software namespace-namesami-vapals-elcap

VAPALS Repo Clone Names
(draft, 2019-06-05)

Home Path to Repos

/home/dev-jvvsami-18.0-vvp/lib/

copper/

silver/

gold/ none at present, coming in a little over a year for vvp-vapals dialect repo

a-mdc-mash--vv-git-mumps

r-vos-dist-osehra-vista--vista--vo-osehra-github

a-sami-vapals-elcap--vo-osehra-github

a-vvp-vapals--vv-git-mumps

r-_web-m-web-server—kban-shabiel-github

r-xugtm-kernel-gtm--kban-shabiel-github

r-xv-vpe--kban-shabiel-github

Repo Type Repo Clone Directories

The goal in a nutshell is a schema that can:

1. manage thousands of closely related repos
2. without any confusion about what's in each one or how we use it
3. support visually scanning a massive directory full of clone names
4. with names that lend themselves to automation
5. to support software knowing which clones contain the software updates they need, without human intervention
6. while ensuring we can get to tab-completion in the fewest possible characters
7. to keep the names practical for use by sysadmins
8. while also ensuring we can unerringly locate the remote repo
9. and that we know what person or institution is responsible for the repo’s contents.

10. It must also store its contents in a standardized structure, to support automation (see next slide).

Mash Naming 6: Repository Structure
(draft, 2019-06-05)

Intermediate Standard

/home/<env>/lib/<category>/<repo-name>/

unix scripts

documentation, notes, diagrams

non-routine software elements

globals/

elements/

admin/

docs/

global distribution files

Emerging Standard

dist/

java/ java source files

routines/ mumps source files

kids distribution fileskids/

elements/

docs/

java/

routines/

sami-18-s1-p1/

src/

sami-18-s2-p3/

sami-18-s3-p2/

unix/

etc/

bin/

sami-18/ semver release 1.18.0

semver release 1.18.1

semver release 1.18.2

semver release 1.18.3

Repo Path

www/

Status Quo: Vista repos follow no detectable standard in terms of where
package elements are stored nor in the syntax used for directory and file
names. Processing of such free-for-all repos is therefore strictly manual, labor-
and expertise-intensive. To replace this state of affairs with automation
therefore requires standardizing repo structures as well as names.

Copper: no standard structure, bazaar, freedom, manual

Silver: as described below, balanced, automatable

Gold: each subdirectory named & structured like a silver
repo, cathedral, automated

Platinum: like src directory below, balanced, automated

Mash Naming 7: Home Directory Structure
(draft, 2019-06-04)

/home/dev-jvvsami-18.0-vvp/

lib/

objects/

docs/

java/

routines/

copper/

run/

gold/

silver/

unix/

etc/

bin/

data/

tmp/

www/

backup/

globals/

journals/

<app-namespace>/

queues/

log/var/

<printer-name>/

<repo-name>/

<repo-name>/

<repo-name>/

<app-namespace>/

<app-namespace>/

run directory holds the running software, which
is then pushed out to the environment’s platinum
repository (excluding the object folder) to
support environment-to-environment, as well as
doing version control on what is and has been
actually running in this environment;
standardizes vista standardization, so it can be
automated

lib directory holds all incoming software; if this is
a development site, then some of these repos are
for outgoing software, while others are
bidirectional; standardizes vista distribution, so
it can be automated

data directory holds all the environment’s live
running data, including the backups and journals
used as the safety net for that data, though those
two are often mount points for other drives

tmp directory is for scratch data

var directory is for highly variable data files, such
as logs, print queues, and so on

Status Quo: Automating Vista distribution also requires standardizing the home directory structure of Vista environments.

Coming Soon 1: Environment & Repo Standardization & Automation
(draft, 2019-06-05)

1. VAPALS Increased Compliance: In the past couple weeks we significantly improved the
compliance of the sami-vapals-elcap repo with this emerging Mash standard. During June
2019, we will bring it and the home directory fully into compliance, before distribution to
our first VA system at Phoenix.

2. Automation for Renaming Environments: We are partway through writing a new routine,
ZTMRENAME, to run while an environment is shut down to change the value of every field
in Vista that holds a UCI, volume, or system name, to bring them into compliance with the
environment’s proper name. We will then write a script to move the home directory, change
the startup scripts, and so on to bring its unix elements into compliance with the proper
system and environment names. We will then develop files and routines to ask the sysadmin
a few questions and use those answers plus a database of namespaces to calculate the
proper name for the UCI, volume, environment, and system. Together, these pieces of
automation will make it practical for the first time to rename an environment without
causing innumerable negative side effects - and without having to be an expert in Mash’s
naming standards. This software will be distributed in the VAPALS Dialect Repo (vvp-vapals)
and MDC Mash Repo (mdc-mash) and VAPALS-VA Dialect Repo (vva-vapals-va) in time for
the release of patch SAMI*18*1, before distribution to Phoenix.

3. Automation for Upgrading Environments: Over the course of the next year and a half, to
be released incrementally, we are iteratively developing new versions of KIDS and the Patch
Module to support keeping our VAPALS servers up to date with Vista patches and new
application versions without requiring a Vista expert to do the patching. In support of this
software, we will be creating and operating what as far as we know is the first fully
automated Vista patch stream outside VA, for our VAPALS dialect, which will distribute
upgrades to our SAMI software and upgrades to other Vista applications (including
preserving our dialect-specific Vista modifications) for installation on our VAPALS servers.
We will simultaneously create and operate an MDC-specific patch stream for distribution of
upgrades to the Mumps Advanced Shell, for installation on our VAPALS servers.

Coming Soon 2: Patch Stream Architecture
(draft, 2019-06-05)

Ag

Cu

Au Gold repo

Silver repo

Copper repo

VEN-controlled server

Externally controlled server

“Home”
Phoenix VAPALS server

(akimel) via git pull of
vva-vapals-va
onto USB drive

Patch Processing Server
(hopper)

vaf-vista-foia

di-fileman

⋮

vos-vista-dist

vos-vista-src

vos-vista-docs

MDC Server
(lovelace) %w-web

mdc-mash

⋮

VAPALS Dialect Server
(avicenna)

vvp-vapals

vaf-vista-foia

di-fileman

mdc-mashsami-vapals-elcap

r-_web-m-web-server--kban-shabiel-github

r-xugtm-kernel-gtm--kban-shabiel-github

r-xv-vpe--kban-shabiel-github

DockerHub

VAPALS-VA Dialect Server
(geber) vvp-vapals

mdc-mash

vva-vapals-va

SAMI Developer
Workstation
(hanbalur)

⋮

sami-vapals-elcap
mdc-mash

vvp-vapals

Gitolite
(hume)GitHub

Vista Community Meeting 2019-06-04/05
George Mason University
Fairfax, Virginia

Frederick D. S. Marshall
Vista Expertise Network

rick.marshall@vistaexpertise.net

Thank You!

	Introduction Slide
	Repository classes
	Original Mumps VM
	Original Mumps VM 2
	Original Mumps VM 3
	Original Mumps VM 4
	Original Mumps VM 5
	Original Mumps VM 6
	Original Mumps VM 7
	Hosted Mumps VM
	Hosted Mumps VM 2
	Hosted Mumps VM 3
	Hosted Mumps VM 4
	Standard Mumps VM
	Mash VM
	Mash Dialect & Dev Names
	Mash Adopter Site & Sys Names
	Mash UCI & Vol Names
	Mash Env Dir & Path Names
	Mash VM 2
	Mash VM 3
	Mash VM 4
	Repo Naming
	Mash Repo Names
	VAPALS Repo Names
	Mash Repo Structure
	Mash Home Directory Structure
	Coming Soon 1: Standardization & Automation
	Coming Soon 2: Patch Stream Architecture
	Conclusion Slide

